Maths Chapter 1 वास्तविक संख्याएँ Ex 1.2
Briefly Solutions
MP Board Class 10th Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.2
प्रश्न 1.
निम्नलिखित संख्याओं को अभाज्य गुणनखण्डों के गुणनफल के रूप में व्यक्त कीजिए :
(I) 140 (ii) 156 (iii) 3825 (iv) 5005 (v) 7429
हल :
(I) 140 = 2 × 2 × 5 × 7
= 2² × 5¹ × 7¹ ans.
(II) 156 = 2 × 2 × 3 × 13
= 2² × 3¹ × 13¹ ans.
(III) 3825 = 3 × 3 × 5 × 5 × 17
= 3² × 5² × 17¹ ans.
(IV) 5005 = 5 × 7 × 11 × 13
= 5¹ × 7¹ × 11¹ × 13¹ ans.
(V) 7429 = 17 × 19 × 23
= 17¹ × 19¹ × 23¹ ans.
प्रश्न 2.
पूर्णांकों के निम्नलिखित युग्मों के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है :
(i) 26 और 91 (ii)510 और 92 (iii) 336 और 54
हल:
(i) 26 = 2 × 13
91 = 7 × 13
HCF = 13
LCM = 2 × 7 × 13 = 182
अब
HCF (26,91) × LCM (26,91)= 13 × 182 = 2366
एवं
26 × 91 = 2366
अत:
HCF (26, 91) × LCM (26,91) = 26 × 91
सत्यापित
(ii) 510 = 2 × 3 × 5 × 17
92 = 2 × 2 × 23
HCF = 2
LCM = 2 × 2 × 3 × 5 × 17 × 23 = 23460
अब
HCF (510, 92) × LCM (510, 92)= 2 × 23460 = 46920
एवं
510 × 92 = 46920
अत:,
HCF (510, 92) × LCM (510, 92) = 510 × 92
सत्यापित ( hance proved )
(iii) 336 = 2 × 2 × 2 × 2 × 3 × 7
54 = 2 × 3 × 3 × 3
HCF = 2 × 3 = 6
LCM = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 7 = 3024
अब
HCF (336,54) × LCM (336,54) = 6 × 3024 = 18144
एवं
336 × 54 = 18144
अतः
HCF (336,54) × LCM (336,54) = 336 × 54
सत्यापित
प्रश्न 3.
अभाज्य गुणनखण्ड विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए :
(i) 12, 15 और 21
(ii) 17, 23 और 29
(iii) 8,9 और 25
हल :
(i) 12 = 2 × 2 × 3
15 = 3 × 5
21 = 3 × 7
HCF = 3
LCM = 2 × 2 × 3 × 5 × 7 = 420
अतः, अभीष्ट HCF = 3 एवं LCM = 420
(ii) 17 = 1 × 17
23 = 1 × 23
29 = 1 × 29
HCF = 1
LCM = 17 × 23 × 29 = 11339
अतः अभीष्ट HCF = 1 एवं LCM = 11339 उत्तर
(iii) 8 = 1 × 2 × 2 × 2
9 = 1 × 3 × 3
25 = 1 × 5 × 5
HCF = 1
LCM = 2 × 2 × 2 × 3 × 3 × 5 × 5 = 1800
अतः, अभीष्ट HCF = 1 एवं LCM = 1800 उत्तर
प्रश्न 4.
HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
हल :
LCM (306, 657) × HCF (306, 657) = 306 × 657
⇒ LCM (306, 657) = 306×6579
[∵ HCF (306, 657) = 9 दिया है।
⇒ LCM (306, 657)= 2010429 = 22338
अतः, अभीष्ट LCM (306, 657) = 22338 उत्तर
प्रश्न 5.
जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए संख्या 6n अंक 0 पर समाप्त हो सकती है?
हल :
हम जानते हैं कि 6n = 2n × 3n का गुणनखण्ड 5 नहीं है, अतः किसी भी प्राकृत संख्या n के लिए 6n संख्या अंक 0 पर समाप्त नहीं होगी क्योंकि 0 पर समाप्त होने वाली संख्याएँ 5 से विभाज्य होती हैं और यह संख्या 5 से विभाज्य नहीं है।
अतः, ऐसी कोई संख्या n नहीं है जिसके लिए 6n अंक 0 पर समाप्त होगी। उत्तर
प्रश्न 6.
व्याख्या कीजिए कि 7 × 11 × 13 + 13 और 7 × 6 × 5 × 4 × 3 × 2 × 1 + 5 भाज्य संख्याएँ क्यों हैं।
हल :
7 × 11 × 13 + 13 = 13 (7 × 11 + 1) = 13 × 78
जो एक भाज्य संख्या है।
एवं 7 × 6 × 5 × 4 × 3× 2 × 1 + 5 = 5(7 × 6 × 4 × 3 × 2 × 1 + 1)
= 5 × (1008 + 1) = 5 × 1009
जो एक भाज्य संख्या है।
अतः, दी हुई दोनों संख्याएँ भाज्य संख्याएँ हैं। उत्तर
प्रश्न 7.
किसी खेल के मैदान के चारों ओर एक वृत्ताकार पथ है। इस मैदान का एक चक्कर लगाने में सोनिया को 18 मिनट लगते हैं, जबकि इसी मैदान का एक चक्कर लगाने में रवि को 12 मिनट लगते हैं। मान लीजिए वे दोनों एक ही स्थान और एक ही समय पर चलना प्रारम्भ करके एक ही दिशा में चलते हैं। कितने समय बाद वे पुनः प्रारम्भिक स्थान पर मिलेंगे?
हल :
18 = 2 × 3 × 3 = 21 × 32
12 = 2 × 2 × 3 = 22 × 31
LCM (18, 12) = 22 × 32 = 2 × 2 × 3 × 3 = 36
अतः, वे पुन: 36 मिनट बाद प्रारम्भिक स्थान पर मिलेंगे।

Comments
Post a Comment